首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2306篇
  免费   259篇
  国内免费   96篇
化学   1420篇
晶体学   3篇
力学   169篇
综合类   46篇
数学   247篇
物理学   776篇
  2024年   1篇
  2023年   39篇
  2022年   101篇
  2021年   114篇
  2020年   106篇
  2019年   76篇
  2018年   74篇
  2017年   162篇
  2016年   176篇
  2015年   152篇
  2014年   150篇
  2013年   183篇
  2012年   127篇
  2011年   132篇
  2010年   115篇
  2009年   101篇
  2008年   118篇
  2007年   113篇
  2006年   128篇
  2005年   75篇
  2004年   86篇
  2003年   58篇
  2002年   42篇
  2001年   33篇
  2000年   29篇
  1999年   27篇
  1998年   17篇
  1997年   21篇
  1996年   14篇
  1995年   12篇
  1994年   13篇
  1993年   10篇
  1992年   5篇
  1991年   10篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1971年   1篇
  1959年   1篇
排序方式: 共有2661条查询结果,搜索用时 46 毫秒
31.
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景。该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战。论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文。该综述包括微流控纸芯片在环境检测中的优势与制造方法介绍;电化学法、荧光法、比色法、表面增强拉曼法、集成传感法等基于纸芯片的先进分析方法介绍;根据环境分析目标物种类,如重金属离子、营养盐、农药、微生物、抗生素以及其他污染物等,对纸芯片的最新应用现状进行了举例评述;基于微流控纸芯片的环境分析研究的未来发展趋势和前景展望。通过综述近期相关研究,表明微流控纸芯片从提出至今虽然只有十几年的发展历程,但其在环境分析研究中的发展却十分迅速。微流控纸芯片可以根据不同的环境条件和检测要求灵活选择制作与分析方法,实现最佳的检测效果。但是微流控纸芯片也面临一些挑战,如纸张机械强度不足、流体控制程度不佳等问题。这些问题指出了微流控纸芯片在环境检测领域的发展趋势,相信随着不断深入的研究,纸芯片将会在未来的环境分析中发挥更大作用。  相似文献   
32.
细胞是生物体形态结构和生命活动的基本单位.常规检测群体细胞的方法往往会掩盖细胞间的个体差异,因此亟需发展高效的单细胞分析策略,深入研究细胞生命活动过程,揭示疾病发生发展机制,推动个体化诊疗.超微电化学传感器具有尺寸小、灵敏度高、时空分辨率高等特点,在单细胞实时动态监测方面发挥了非常重要的作用.目前,微纳电化学传感器在电极制备、高性能传感界面构建、理论分析等方面已取得重要进展,且在单细胞实时监测及相关细胞机制研究方面取得突破.然而,单细胞内环境复杂、活性分子浓度低且随时空高度动态变化,这对微纳电化学传感器的灵敏度和选择性等综合性能提出了更高要求.我们课题组长期从事基于微纳电化学传感的单细胞与亚细胞实时动态监测研究,本文主要介绍了我们近10年来在该领域的研究进展,并对未来的挑战与机遇进行了探讨.  相似文献   
33.
Multiphase flow metering with operationally robust, low-cost real-time systems that provide accuracy across a broad range of produced volumes and fluid properties, is a requirement across a range of process industries, particularly those concerning petroleum. Especially the wide variety of multiphase flow profiles that can be encountered in the field provides challenges in terms of metering accuracy. Recently, low-field magnetic resonance (MR) measurement technology has been introduced as a feasible solution for the petroleum industry. In this work, we study two phase air-water horizontal flows using MR technology. We show that low-field MR technology applied to multiphase flow has the capability to measure the instantaneous liquid holdup and liquid flow velocity using a constant gradient low flip angle CPMG (LFA-CPMG) pulse sequence. LFA-CPMG allows representative sampling of the correlations between liquid holdup and liquid flow velocity, which allows multiphase flow profiles to be characterized. Flow measurements based on this method allow liquid flow rate determination with an accuracy that is independent of the multiphase flow profile observed in horizontal pipe flow for a wide dynamic range in terms of the average gas and liquid flow rates.  相似文献   
34.
Estrone (E1), estradiols (α/β-E2), and estriol (E3) are four major metabolically active estrogens exerting strong biological activities at very low circulating concentrations. This paper reports a sensitive and efficient method with automated, on-line clean-up and detection to determine trace estrogens in a small volume of serum samples using liquid chromatography–electrospray ionization–tandem mass spectrometry directly, without off-line liquid–liquid or solid-phase extraction pretreatments. Serum aliquots (charcoal stripped fetal bovine serum, 100 μL) were spiked with four estrogen standards and their corresponding isotope-labeled internal standards, then bulk derivatized with 2-fluoro-1-methyl-pyridium p-toluenesulfonate (2-FMP) to establish the calibration curves and perform method validation. Calibration was established in the concentration ranges of 5–1000 pg mL−1, and demonstrated good linearity of R2 from 0.9944 to 0.9997 for the four derivatized estrogens. The lower detection limits obtained were 3–7 pg mL−1. Good accuracy and precision in the range of 86–112% and 2.3–11.9%, respectively, were observed for the quality control (QC) samples at low, medium, and high concentration levels. The stability tests showed that the derivatized serum samples were stable 8 h after derivatization at room temperature and at least to 48 h if stored at −20 °C. The method was applied to measure trace estrogens in real human and bovine serum samples, and three of four estrogen compounds studied were observed and quantified.  相似文献   
35.
This is the part I of a tutorial review intending to give an overview of the state of the art of method validation in liquid chromatography mass spectrometry (LC–MS) and discuss specific issues that arise with MS (and MS/MS) detection in LC (as opposed to the “conventional” detectors). The Part I briefly introduces the principles of operation of LC–MS (emphasizing the aspects important from the validation point of view, in particular the ionization process and ionization suppression/enhancement); reviews the main validation guideline documents and discusses in detail the following performance parameters: selectivity/specificity/identity, ruggedness/robustness, limit of detection, limit of quantification, decision limit and detection capability. With every method performance characteristic its essence and terminology are addressed, the current status of treating it is reviewed and recommendations are given, how to determine it, specifically in the case of LC–MS methods.  相似文献   
36.
The hemoglobin (Hb) released from erythrocytes is a primary nutritive component for many blood-feeding parasites. The aspartic protease cathepsin D is a hemoglobinase that is involved in the Hb degradation process and is considered an interesting target for chemotherapy intervention. However, traditional enzymatic assays for studying Hb degradation utilize spectrophotometric techniques, which do not allow real-time monitoring and can present serious interference problems. Herein, we describe a biosensor using simple approach for the real-time monitoring of Hb hydrolysis as well as an efficient screening method for natural products as enzymatic inhibitors using a quartz crystal microbalance (QCM) technique. Hemoglobin was anchored on the quartz crystal surface using mixed self-assembled monolayers. The addition of the enzyme caused a mass change (frequency shift) due to Hb hydrolysis, which was monitored in real time. From the frequency change patterns of the Hb-functionalized QCM, we evaluated the enzymatic reaction by determining the kinetic parameters of product formation (kcat). The QCM enzymatic assay using immobilized human Hb was shown to be an excellent approach for screening possible inhibitors in complex mixtures, opening up a new avenue for the discovery of novel inhibitors.  相似文献   
37.
A new modular slit die with optical windows in two different positions and three pressure transducers flush-mounted along the wall was built and coupled to the exit of a twin-screw extruder. Thus, the birefringence and the pressure drop of polystyrene were monitored inline during extrusion. Two experimental procedures were tested: steady-state and cessation of extruder feeding. The latter proved to be very useful in the case of polystyrene since the ratio between the birefringence and the pressure drop can be quantified for a wide range of steady-state conditions with a single experiment. In fact, down to relatively lower values of pressure drop, the birefringence proved to be a function of shear stress at the wall only, depending neither on the initial feeding rate nor on the aspect ratio of the slit die, for W/h down to 5, at least.  相似文献   
38.
The present work describes the development and validation of a sensitive method for the determination of traces of diverse groups of pharmaceuticals and endocrine disruptors in surface water. Thirty-seven substances have been selected, including 10 pesticides, 6 hormonal steroids and assimilates, 12 pharmaceuticals, 5 alkylphenols, 1 chlorophenol and 3 other well-known human contaminants, 1 UV filter and 2 plasticisers. An automated online solid-phase extraction (SPE) is directly coupled to liquid chromatography–tandem mass spectrometry. Different SPE columns have been tested, and the injection volume has been optimised. The developed analytical methodology is based on the direct injection of 2.5 mL of water sample acidified at pH 1.6 on an Oasis HLB loading column (20 × 2.1 mm) with 5-µm particles. Then, the chromatographic separation is achieved on a Kinetex XB C18 (100 × 2.1 mm; 1.7 µm) column, and the quantification is realised in multiple-reaction monitoring mode. The online SPE step warrants minimal sample handling, low solvent consumption, high sample throughput, saving time and costs. This method allows the quantification of the target analytes in the lower ng/L concentration range, with limits of quantification (LQs) between 100 pg/L and 10 ng/L, 26 compounds having LQ lower than 1 ng/L. The monitoring of two selected MS/MS transitions for each compound allows the reliable confirmation of positive findings even at the LQ level. The developed and validated methodology has been applied to the analysis of various real samples from two French rivers. Twelve target compounds have been detected in the environmental samples, and the major pollutants are pharmaceuticals usually used by humans (paracetamol, carbamazepine, oxazepam, ketoprofen, trimethoprim). The pesticides atrazine and carbendazim have been ubiquitously detected in real samples too. Metronidazole, sulfamethoxazole and diuron were also frequently quantified in the water samples.  相似文献   
39.
The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy technique and two dimensional(2D) correlation analysis.The adsorbed layer studied was prepared by coating α-PbO particles onto the surfaces of the ZnSe crystal.The appearance of spectral peaks at 1203 cm-1,1033 cm-1 and their red shift indicated the formation and aggregation of xanthate at the surface of α-PbO.According to 1R intensity changes after rinsing with deionized water and a NaOH solution,the adsorption was proved to be a chemisorption type.The competition between xanthate and OH for the surfaces leads to desorption of xanthate at higher pH.The technique of 2D correlation ATR-FTIR spectroscopy was used to evaluate the changing order of spectral intensities in the adsorption process,and the results indicated that xanthate micelles were formed at the surfaces.The adsorption kinetics of butyl xanthate was found to be a pseudo-second-order reaction model and the adsorption capacity of butyl xanthate at α-PbO was as high as 281 mg g-1 after 150 min.  相似文献   
40.
Hydrogen sulfide (H2S) has emerged as an important gasotransmitter in diverse physiological processes, although many aspects of its roles remain unclear, partly owing to a lack of robust analytical methods. Herein we report a novel surface‐enhanced Raman scattering (SERS) nanosensor, 4‐acetamidobenzenesulfonyl azide‐functionalized gold nanoparticles (AuNPs/4‐AA), for detecting the endogenous H2S in living cells. The detection is accomplished with SERS spectrum changes of AuNPs/4‐AA resulting from the reaction of H2S with 4‐AA on AuNPs. The SERS nanosensor exhibits high selectivity toward H2S. Furthermore, AuNPs/4‐AA responds to H2S within 1 min with a 0.1 μM level of sensitivity. In particular, our SERS method can be utilized to monitor the endogenous H2S generated in living glioma cells, demonstrating its great promise in studies of pathophysiological pathways involving H2S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号